Fuzzy least-squares linear regression analysis for fuzzy input-output data

نویسندگان

  • Miin-Shen Yang
  • Tzu-Shun Lin
چکیده

A fuzzy regression model is used in evaluating the functional relationship between the dependent and independent variables in a fuzzy environment. Most fuzzy regression models are considered to be fuzzy outputs and parameters but non-fuzzy (crisp) inputs. In general, there are two approaches in the analysis of fuzzy regression models: linear-programmingbased methods and fuzzy least-squares methods. In 1992, Sakawa and Yano considered fuzzy linear regression models with fuzzy outputs, fuzzy parameters and also fuzzy inputs. They formulated multiobjective programming methods for the model estimation along with a linear-programming-based approach. In this paper, two estimation methods along with a fuzzy least-squares approach are proposed. These proposed methods can be e5ectively used for the parameter estimation. Comparisons are also made between them. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of hybrid fuzzy regression capability based on comparison with other regression methods

In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...

متن کامل

Multiple Fuzzy Regression Model for Fuzzy Input-Output Data

A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...

متن کامل

Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data

In order to estimate fuzzy regression models, possibilistic and least-squares procedures can be considered. By taking into account a least-squares approach, regression models with crisp or fuzzy inputs and crisp or fuzzy output are suggested. In particular, for these fuzzy regression models, unconstrained and constrained (with inequality restrictions) least-squares estimation procedures are dev...

متن کامل

Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data

The method for obtaining the fuzzy estimates of regression parameters with the help of “Resolution Identity” in fuzzy sets theory is proposed. The -level least-squares estimates can be obtained from the usual linear regression model by using the -level real-valued data of the corresponding fuzzy input and output data. The membership functions of fuzzy estimates of regression parameters will be ...

متن کامل

Estimation of a simple linear regression model for fuzzy random variables

A generalized simple linear regression statistical/probabilistic model in which both input and output data can be fuzzy subsets of Rp is dealt with. The regression model is based on a fuzzy-arithmetic approach and it considers the possibility of fuzzy-valued random errors. Specifically, the least-squares estimation problem in terms of a versatile metric is addressed. The solutions are establish...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2002